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INTRODUCTION 

The theory of fracture mechanics has been a very successful tool in 

engineering application in recent years.  This is mainly due to the use of a 

single characteristic parameter namely the stress intensity factor, that is 

the coefficient of the stress singularity at the tip of a crack in the linear 

theory of elasticity-  In most of the two dimensional cracks, in homogeneous 

media, the singularity is of the order one half.  For the three dimensional 

cracks, however, the singularity depends upon the geometric configurations. 

In this report we study the singularities at the apex of a thin wedge- 

shaped crack shown in Figure 1 under three loading conditions. Using the near 

field approach, the problem is reduced to an eigenvalue problem for coupled 

dual integral equations. The results indicate that cracks tend to straighten 

out at the apex. 

In the following sections we first prove the variational theorem by 

which the eigenvalue of coupled integral equations is to be obtained. This 

eigenvalue problem is not the linear one commonly encountered in mathematical 

physics. Next we present Papkovitch stress function approach to three dimen- 

sional theory of elasticity. Then coupled dual series relations are obtained 

by using mixed boundary conditions. These series are transformed to coupled 

singular integral equations. Finally the variational method is applied to the 

coupled integral equations to obtain eigenvalues. 



The variational method completely avoids the solution of complex singular 

integral equations.  In this study Macsyma was found to be an indispensable 

tool at all levels of analysis. 

VARIATIONAL THEOREM 

Consider the following pair of homogeneous coupled integral equations 

with Fredholm kernels. 

a a 
J   K (ct.^yKOJOdtjj + J   K12C(M;y)gO}0<ty - 0 (1) 
0 0     ^ 
a a 

/    K21((M;uO£0{0#      /    K22((M;vOg0J0di|) = 0 (2) 
0 0 

where eigenvectors f and g and the eigenvalue y are unknown and K-,, ((}),ijj;y) 

etc. involve y in a linear or nonlinear fashion. Construct the following 

characteristic equation for the determination of y* with appropriate trial 

functions f*0JO and g*0jj). 

a    a a    a 
(/ f*(x)/ K (x,y)f*(y)dydx)(/ g*(40/ K^C^ijOg*WOdW) 
0     0 0     0 " 

a    a a    a 
-(/ £*(x)/ K (x,y)g*(y)dydxH/ g*WJ K    ^^)f*^)di,d^  = 0     (3) 

0     0 0     0 Zi 

If f* and g* vary around the exact solutions f and g as 

f*OIO = fC*) + 65C*) . f *(<*>) = g(<f)) + <5n(4>) (4) 

then (y*-y) is stationary around 6 as 6 approaches zero. That is 

y* = y + 0(62) 

provided 



K11((})^) = K^,*) 

K22(ct)^) = K220J;,(J)) (5) 

K12(({.,W = K21^,(()) 

Proof: Symbolically we write equation (3) as 

(f^jf*) (g*K22g*) - (f*K12g*)(g*K21f*) = 0 (6) 

where 

f* = f + 6^ ,  g* = g + 6n . (7) 

Expanding the kernels around y, we have 

K11(y) = Kn(V*)   *  AK^jCy*) + 0(A2)  ,  etc. (8) 

where 

A = y - y* (9) 

Substituting from (7) and (8) into (6) and using (5) we obtain 

[(fKllf)(gK22g) - (fKl2g)(fKl2g)] 

* 26[(CK11fKgK22g) - (5K12g)(fK12g) + (nK22g) (fK11f) - (fK12n) (fK12g) ] 

+ L,A + L26
2 + higher order terms = 0 (10) 

where 

Ll = (fK11
fKgK,

22g) + (fK«11f)(gK22g) - 2(fK12g)(fK'12g)     (10a) 

L2 = C5K11C) CgK22g) ' (ai28)2 + ^n^CS^TO 

+ (fK11f) (nK22n) - (fK12ri)
2 - 4(fK12n)(?K12g) .        (10b) 

Using equations (1) and (2) it is seen that the first two terms in (10) vanish. 

Hence 
A = 62(L2/L1) + 0(63)  . (11) 



The above proves that A is of the second order in 6. This completes the 

proof of the theorem.  Because the eigenvalues involved in kernels can be in 

a nonlinear fashion we cannot prove its bounds as can be done for the linear 

case in Reference 1. 

PAPKOVITCH STRESS FUNCTIONS 

In the absence of body force the equation of equilibrium of a homogeneous 

isotropic elastic solid is given by 

V2u  + -i- VV«u = 0 . (12) 
l-2v 

Using Helmholtz decomposition theorem the solution of (12) can be written 

2,3 
as 

2Gu = VBQ + V(r°B) - 4(l-v)B (13) 

where G and v are shear modulus and Poisson's ratio. B and B are known as 
o 

Papkovitch stress functions satisfying 

V2B0 = 0  ,  V2B = 0  ,  B = iijj + ju + kX  . (14) 

For computational purposes it is convenient to write the solution as a super- 

position of the following basic solutions,, 

1st Basic solution:    2Gu = VB 

2nd Basic solution:    2Gu = VCxi(0 - 4(l-v)ijji 

(15) 
3rd Basic solution:    2Gu = V(yaj) - 4(l-v)ayj 

4th Basic solution:    2Gu = V(zX) - 4(l-v)Xk 

1Barlett, C.C. and Noble, B., "A Variational Method for the Solution of Eigen- 
value Problems Involving Mixed Boundary Conditions," Applied Science Research, 
Section B, Vol. 9, 1962. 

2Green, A.Eo and Zerna, W., THEORETICAL ELASTICITY, 2nd Edition, Oxford, 1968. 

^Lure', A.T., THREE DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY, Inter- 
Science Publishers, 1964. 



These basic solutions were transformed to the following spherical coordinate 

system 

x = r sin 6 cos (J) , y = r sin 8 sin $    ,     z = r cos 9       (16^) 

with the origin at the apex of the crack as shown in Figure 2. This enables 

us to obtain near field solutions and to study the stress singularity at the 

apex.  The complete results of components of displacement and stress for basic 

solutions are given in Appendix 1. Since we are interested in the power 

singularity at the apex, so we choose Papkovitch potentials in the form 

H(r,e,« = r^Ce.tfO (17) 

where y is the eigenvalue to be determined. As can be seen from Appendix 1, 

stress components will be of the form 

a = Qir11'1) (18) 

which will be singular when y < 1. For the displacements to be finite we 

seek positive eigenvalues between 0 and 1. 

The near field geometry surrounding the apex permits us to write (17) 

as the separation of variables solution 

m cos m^ 
H^.e,*) = I  rMP (cos 6)     or (19) 

m sin nuf) 

where P (x) is the associated Legendre function of the first kind with degree 

y and order m. When (19) is substituted into the four basic solutions given 

in Appendix 1 we see that the forms of some solutions thus obtained are not 

convenient to work with. The final solutions used in this analysis are 

designated as solutions A, B, C, and D which are given in Appendix 2.  Solu- 

tion A was obtained by replacing y by y + 1 after the substitution from (19) 



into the first basic solution. Solution B is obtained by adding the second 

and the third basic solutions with proper trigonometric functions in (19), 

replacing m by m + 1 and then using Legendre recursion formulae.  A similar 

process was used to obtain solution C. Solution D simply comes from the 

fourth basic solution with the use of (19)„ 

Solutions A, B, C, and D must not be linearly independent. This is due 

to the fact that the condition that the vector point function is solenoidal 

has not been used explicitly in Papkovitch stress functions approach. We 

found these solutions are indeed not independent.  A relation among them can 

be written symbolically in the form 

(y+m+l)[C] = [B] + 2(y+m+l)[D] - 2(y-3+4v)[A]  .        (20) 

Hereafter solution C is replaced by solutions A, B, D using (20). 

THREE MODES OF CRACKS AND COUPLED INTEGRAL EQUATIONS 

For a crack shown in Figure 2, the leading edges of the crack are (J) = ± a 

and the crack is in the x-y plane (9 = TT/2)„  Let D~ and D be the cracked and 

uncracked region of the plane 9 = Tr/2„  Within the cracked region, the dis- 

placement is discontinuous.  If the discontinuity is in the z-direction 

(u - u~ = finite), the crack is under mode I; if the discontinuity is in the 
a    9- 

+ 
x-direction (u - u = finite), the crack is defined to be under mode II; and 

x   x 

if u - u = finite, the crack is defined to be under mode III.  Boundary 
y  7 

conditions for various modes are tabulated below. 



TABLE I.  BOUNDARY CONDITIONS ON 9 = Tr/2 

Non Mixed Conditions         Mixed Conditions 
(in D" •»• D ) in D" in D+ 

Mode I T9r =; Te<i) '' " 0 a6 = 0 ue = 0 (21) 

Mode II OQ =  0 T9r = TW = 0 U = u. = 0 r   (j) (22) 

Mode III ae - 0 T9r = T9* = 0 r   9 (23) 

For mode I, UQ is even in $', This leads to the use of the trigonometric 

functions at the top of (19). The boundary conditions of (22) and (23) are 

identical, but the symmetric properties are different for mode II and mode III, 

In the former case, ur is even and u^ is odd in $ while in the latter, the 

reverse is true. Hence the proper set of quantities should be selected in 

(19), for each case,, 

MODE I, Using equation (19) and the non-mixed conditions of (21), we 

have 

Bm = 0  ,  A^ = (m+y+l)"
1(l-2v)Dm . (24) 

The mixed boundary conditions of (21) and using (24) and (19), yield 

I bm cos m4) = 0 0£4)<a 

I q b    cos mtj) = 0 a < ^ < TT 

(25) 
lm m 

where £ denotes the summation with respect to m for m = 0,1,2,.,.", and 

bm = (-ra+y+l)DmpJ|+1  ,  qm = C-m+y+l)"
1?"/?^  ,  P^ = P"(0)      (26) 



MODE II. For the homogeneous condition of afl in (22), using (19), the 

coefficients A, B, and D are related in the form 

2(l-v)Dm = (m+y+l)^ + [y2 + 2v(y+l) - 2(l-v)m - l]Bm 

This relation and the mixed conditions of  (22)  yield the following coupled 

dual series: 

I Em cos m({) = 0 0£<J)<a 

T   (R E +S F )cos md) = 0 a < 6 < tr (27) ^      m m   m nr Y v — v    J 

I    F    sin m(() = 0 0 <_ $ < a 

pi 
)     (U Fm+T ETn)sin m* = 0 a<d)<iT (28) ''mmmra — ^    J 

where I    denotes the summation with respect to m for m = 1,2,...<»,  and 

E    = -(m+y+l){yA    +   [4m(l-v)2 + y(y+4v-ra-3)]E  }Pm (29) 
m m my 

Fm =   (m+y+l){mAm +   [4y(l-v)2 + m(y+4v-m-3)]B }Pm (30) 

R    =   [m2 - y(y+l)(l-v)]V      ,    S    = m(l-v-vy)V 
m m m m 

Um =   [(l-v)m2  - y(y+l)]Vm    ,    Tm = m(l+vy)Vir (31) i2 

m  , m 
in (31) Vm stands for Py+1/Py/[(m+y+1)(m

2-y2)]. 

MODE III. Similar to the preceding case, we have 

I    E sin m()) = 0 0<_(f)<a 

l'   (R E +S F )sin m4) = 0 a < $ < v                              (32) ''mmmm T—              ^    ■' 
^ Fm cos m(j) = 0 0 < § < a 

7 (U F +T E )cos md) = 0 a < <b < ir                                 (33) ^^mmmnr    Y ^ —                                     y    J 



It was found that the dual series (25) for mode I is identical to that 

of a potential problem studied in References4, 5, and 6 and will not be 

discussed here,, 

For convenience we make the following change of variables 

* = TT-O) , a' = ™ ,  (-l)mEra = Em'  ,  C-l)mFm = Fm. 

Rm= VCl-v-vy) . Sm - Sm'(1-v-vy) 

Um = Um,(1+Vu)(-1)  ' T
m 

B Tn,'Cl+VUK-n  • (34) 

The dual series of (27), (28) now become 

I E^   cos mo) = 0 (35) 
, a' < w <_ IT 

I    Fm
, sin raw = 0 (36) 

I   CRm
,Em

,+STT,
,Fm

I)cos ma) = 0 (37) ''^mmmm^ .      . "--' 
, 0 _< a) < a1 

I     (T 'E '+11 'F ')sin mw = 0 (38) 
^   m m  m m ^    J 

Let the right hand sides of (35) and (36) for the interval 0 < OJ < a' be 

denoted by unknown functions f(aj) and g(a)), respectively. The Fourier 

inversion gives a1 

i ,a' V = 1/ foiocos my 
Eo'  = - / f (^dij;    , ^   0 (39) 

Fn,'  = - / g WO sin wtydty 

Noble, B., "The Potential and Charge Distribution Near the Tip of a Flat 
Angular Sector," EM-135, New York University, NY, 1959. 

5Brown, S„N., and Stewartson, K., "Flow Near the Apex of a Plane Delta Wing," 
Journal of Institute of Mathematics and Its Applications, Vol. 5, p. 206, 
1969. 

Morrison, J,A,, and Lewis, J.A., "Charge Singularity at the Corner of a Flat 
Plate," SIAM, Journal of Applied Mathematics, Vol. 31, p. 233, 1976. 



Substituting from (39) into (37), (38) and interchanging the order of summa- 

tion and integration we have the following coupled integral equations for 

the determination of f and g, 

a1 ot' 
/ K11((o,4;;u)f(Wdi|; + / K12Cu.l|';yDgW0# = 0 (40) 
0 0 

a' a' 
/ K   (u^jiOfOJOdijj + / K22(w,^;y)g0|/)d4i = o (41) 

where 

K11(u),t|»;vi) = -J V + I'V  cos "^ cos ^ 

K12(aj,ijj;y) = I's^' cos mto sin imjj 

K (w,ij;;u) = I  T^ sin mw cos m^ 

K ((J0,^;y) = ^,Um
l sin rm  sin nuf; .                 (42) 

7 
It can be shown that 

pm 
Py+1    -2  _.m-u+l m+u+2. ,„,m-u. .^m+u+U 

pin   m-y 
_ r (*^li) r W£h /r (^) /r ^ii) 

y 

Using (43) and (34) the following asymptotic expansions can be established, 

R i . -(l-v-yv)"1(l/m) + 0(l/m2)  , S • = 1/m2 + 0(l/m3) 
m m 

U • = [-(l-V)/(l+vy)](l/m) + 0(l/m2)  , T ' = 1/m2 + 0(l/m3)  .  (44) 
m ra 

Substituting from (44) into (42) and summing the dominant part of the series 

v,   4'8 
we have, 

4Noble, B., "The Potential and Charge Distribution Near the Tip of a Flat 
Angular Sector," EM-135, New York University, NY. 

7Magnus, W. and Oberhettinger, F., SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS, 

Chelsea Publishing Co,, 1949. 
8Jolly, L.B.W., SUMMATION OF SERIES, Dover Publications, p. 126, 1961. 

10 



K11(CO,IJJ) = — log 2 | cos a) - cos ^1 + regular terms      (45) 

KOO((J0,I|J) = "(1"V^ log I sin (^)/sin C^)! + regular terms     (46) 22       2(l+vy)    '2       2 

The previous expressions show the kernels have logarithmic singularities. 

Similar analysis can be carried out for equations (32) and (33) for mode III 

(interchanging R ' and U '  S ' and T '). 
m     mm     m 

APPLICATION OF VARIATIONAL PRINCIPLE 

Equations (40) and (41) are identical to equations (1) and (2) and all 

the conditions of the theorem required for the kernels are satisfied.  In 

this section we shall apply the theorem to obtain approximate eigenvalues by 

assuming approximate trial functions. Without causing ambiguity we shall 

drop the asterisks and assume the following trial functions, 

1/2 
f(t) = (30 + cos t)cos(t/2)(cos t - cos a1) 

1/2 
g(t) = [(1 - cos a') + 2 cos t]sin(t/2)/(cos t - cos a')       (47) 

where 

2, t/rii*  Ov-W^o'  + log sin2(aV2) 6    = -  cosz(a /2J  (48) 
0 (I-V-VI^RQ' + log sir\2(_a'/2) 

The above trial functions are the first approximations to the integral equa- 

tions (40) and (41) with kernels (42) replaced by their dominant parts given 

by (44). The method of obtaining such solutions by direct computation is 

illustrated in Reference 9. 

Noble, B., Hussain, M.A., and Pu, SoLo, "Apex Singularities for Corner Cracks 
Under Opening, Sliding, and Tearing Modes," to be published in the Proceed- 
ings of the International Conference on Fracture Mechanics in Engineering 
Application, Bangalore, India, 1979. 

11 



Substituting from (47) into the characteristic equation (3), changing 

the order of summation and integration and using the integral representation 
7 

of Legendre functions, we obtain 

I11I22 " I12 = 0 W 

where 

I.. - 2R '(l+ZB+P.)2 + V'R '[P  , + (l+2g UP +P  ,1 + P o12 11    o Ko P   ^ m l m+1  ^  ^o-7 ^ m m+1-'   m-2J 

I.. = 4^11 '[P   - p (P -p  ) . p  ]2 
22   L m L m+1   1^ m ra-1 J        m-2J 

I10 = -27*5 '[P , + (1+23 )(p +p  ) + p  ][p   _ p rp _p  -> _ p  | 
12    ^ m l m+1     V^m m-r   m-2J L m+1   llm m-r   m-2J 

Pm = Pm(cos a') (50) 

For different values of v and a' (the complementary angle to half of 

the vertex angle of the wedge-shaped crack) we get approximate values of y 

from equation (49) for both modes II and III, 

The form of (49) is very well suited for Macsyma evaluation and using 

eight terms for summations in (50), the results for p are marked by x in 
9 

Figure 3 where the solid lines are results obtained by another method.  The 

results by both methods are in good agreement. 

A further refinement of results can be obtained by selecting 

cos(t/2) f (t) = (A + B cos t) ^-^  
(cos t - cos a')1/^ 

g(t) = (C + D cos t)  Sin(t/2) rjr (51) 
(cos t - cos a1) ' 

Magnus, W. and Oberhettinger, P., SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS, 
Chelsea Publishing Co., 1949„ 

12 



and formally extending the variational technique to a characteristic equation 

obtained from the vanishing of the determinant of a four by four system (A, 

B, C, D in (51) must not all vanish).  The results, using Macsyma and summing 

to a maximum of eight terms in (50), are compared in the following table. 

They also are shown as • in Figure 3. 

 TABLE II.  VALUES OF y FOR v = 0.25  

Half Vertex      Variational Method       Direct Method 
Mode Angle a Using (47)    Using (51) Ref. 9  

II 

O.lTT 0o9333 0.9616 0.9582 

0.3TT 0.6489 0.6961 0.6953 

0.5TT 0.4752 0o5107 0.5017 

0.7-n 0.3585 0„3749 0.3654 

0.97r 0.2213 0.2469 0.2137 

O.lTT 0..9739 

0,3TT 0.7642 0.8253 0.8270 

0.5TT 0.4881 0.5192 0.5027 

0,6TT 0.3829 0.4034 0.3914 

0.7TT 0.3021 0.3015 

0O8TT 0.2372 0.2335 

III 

9 
Noble, B., Hussain, M.A., and Pu, S.L„, "Apex Singularities for Corner Cracks 
Under Opening, Sliding, and Tearing Modes," to be published in the Proceed- 
ings of the International Conference on Fracture Mechanics in Engineering 
Application, Bangalore, India, 1979. 

13 



Even the rigorous proof of the extension of the variational technique 

from the two by two system using trial functions (47) to the four by four 

system using trial functions (51) is still to be done, the results thus 

obtained are in good agreement with results achieved by using trial functions 
9 

(47) or other methods. 

CONCLUSIONS 

For modes II and III, the results show that the stress singularities are 

dominated by the vertex angle as well as the elastic constant v of the mate- 

rial. The results further indicate that when the apex angle is greater than 

180°, the stress singularity is stronger than one half enhancing the tendency 

of crack front to straighten out. Similarly, when the vertex angle is less 

than 180°, the stress singularity is less severe than one half and, again, 

this will tend to retard the growth at the vertex until the crack front 

straightens out. 

Macsyma was extensively used throughout the analysis, especially in the 

generation and use of special functions such as Legendre functions. Gamma 

functions, Bessel functions from Share directory, in the summation of series, 

in the solution of linear equations, in seeking roots of determinants of 

matrices, in the plot routine and in the creation of file for Batch with 

Teco, etc. This investigation would have been extremely tedious without 

Macsyma. The methods as well as results in the full entirety, to our knowl- 

edge, do not seem to have appeared in literature. 

%oble, B., Hussain, M.A., and Pu. S.L., "Apex Singularities for Comer Cracks 
Under Opening, Sliding, and Tearing Modes," to be published in the Proceed- 
ings of International Conf. on Fracture Mechanics in Engr Application, 
Bangalore, India, 1979. 
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APPENDIX 1 

In this appendix we give components of displacement and stress in terms 

of Papkovitch stress functions $, IJJ, w, and X. A subscript to a stress 

function means the partial derivative of the stress function with respect 

to the variable represented by the subscript, e.go, $    = dfy/dr,  $      = 

3(3(t)/c3r)/3p. The variable p = cos 9 is used in the place of 6 in both 

1/2 
Appendix 1 and Appendix 2o The notation p = sin 6 = (1-p2)   is also used, 

The First Basic Solution: 

2Gu = 4 r  Tr 

2Gue = - p(l)p/r 

a = d) r  Trr 
ae = r'2(P2(t,pp " p*p + rV 

% = r"2(VP2 + ^r -  PV 
Te({, = "r"2(Vt. + vUr?Z) 

T . = r"2p(-rc|)  + (j) ) 
rS        rp   p 

The Second Basic Solution: 

2Gur = [rij;r - (3-4v)i|j]p cos 6 

2Gue = -[p
2^p + (3-4v)pi|j]cos (J) 

2Gu, = iK cos cj) + (3-4v)i[i sin (|> 

ar = ^rr " 2(:i"v:)lfJr + 2vr'IP^plP cos * + ^(rp)"1^ sin $ 

16 



OQ = r"X[p2^      +  (l-2v)pijjp +  Cl-2v)r^r]p cos 0 + ZvOp)"1^ sin (f) 

^ = (rp)-1^ *   (l-2v)rp2^r -   (l-2v)pp2i|jp]cos $ + 2(l-v) (rp)-1^ sin cj) 

T9(t) = f'^'Up2^ + 2(l-v)p^t()]cos cj) -   Cl-2v)r-lpT|>p sin * 

Tr{j) = ^^^Ar '  2(1-v),iJ
(j)]

cos * +   Cl-2v)l|)r sin (f) 

Tr6 = [-P2^rp -   (l-2v)p^r + 2(l-v)r-1p24;p]cos cj) 

The Third Basic Solution: . 

2Gur =   [r(jjr -   (3-4v)a)]p sin $ 

2Gufl =  -   [p2a)    +   (3-4v)pa)]sin $ 

2Gu    = w.sin (j) -   (3-4v)u) cos (f) 

a    =   [rco      -  2(l-v)a)    + 2vr~1pa) ]p sin & - 2v(rp)"1aj,   cos (}> r rr r p (j) 

CTQ = r'Up2^      +   (l-2v)pu3    +   (l-2v)rcor]p sin $ -  2v(rp)-1(jj({) cos $ 

a    = r-1^,,/?2  +   (l-2v)ra)    -   (l-2v)pu) ]p sin § -  2 [1-v) (rp)"1^    cos $ 

•^ =   C-rp)"1^2"-^ + 2(l-v)pa)({)]sin $ +   (l-2v)r-1pa)p cos ()i 

x   ,  = r"1[ru) ^ - 2ri-v)aji]sin * -  (l-2v)a)    cos 4 
r(J) re)) cj) r 

Tre =   [-P2"      "   Cl-2v)pur + 2(l-v)r"1p2a)p]sin $ 

The Fourth Basic Solution: 

2Gur = [rXr - (3-4v)X]p 

2Gue = [-pXp + (3-4v)A]p 

2Gu(j) = pp^X^ 

CTr = rpXrr " ^"^P^. " 2vr-1p2Xp 

aQ = r-^X  + (l-2v)pXr * r-
1(p2+2vp

2-2)Xp 

a^ = r-^Pp-'X^ + (l-2v)rpXr - (p2+2vp
2)Xp] 

17 



'rcj) 

Lre 

r-U-pA^+ (2-2v-p-)X^] 

(rpr^rpX^ - 2(l-v)pX(t)] 

P[-P^rp 
+ 2(l-v)r-1pAp +   Cl-2v)Xr] 

18 



APPENDIX 2 

In the following solutions, the selection of cos nuj) or sin mcf) depends 

on the geometry of the problem. The sign on top goes with the trigonometric 

function on the top and vice versa. 

Solution [A]: 
cos m<)) 

2Gur = (y+l)rV 
^ sin mcf) 

urn m cos m^ 
2Gue =   (rM/p)[(y+l)pPu+1  -   (ra+u+l)Py] 

sin m(j) 
sin mcf) 

2Gu,   = +   (r^/^mP"1 . 
cos mcf) 

1 cos mcf) 
a    = yCy+l)^"1?"1 

r ^+1sin mcf) 
U  1 m cos mcf) 

a0 =  (rM" /p2){m2-y-l-p2y(y+l)]PJj+1  + pCm+y+l^PJ1;} 

U   1 m m   C0S   m$ 
O. =  (r      /p2)[(-m2

+y+l)P        - p(m+y+l)p"|] 
sin mcf) 

ii  1 m m s:'-n "^ 
Te(t, = ;  (rU    /P2)ni[ypp"|+1  -   (m+y+l)p"] 

M cos mcf) 

,,i ™    sin ^ 
T   .   = +   (rH    /p)myP 

rep u+1 , y M    cos mcf) 

u  1 m m cos ^ 
Tre =   (r1-1    /p)y[(y+l)pP"|+1  -   (m+y+l)p

m] 
^ sin mcf) 

sin mcf) 

cos mcb 

Solution [B] 

2Gur = r
U(y-3+4v)[(-m+y+l)P",

+1  (m+y+^pP"'] 

sin mcf) 

y - m m cos m<b 
2Gue =   (r /p){(-m-4+4v)(-m+y+l)pP +    +   (m+y+l)[m+4-4v-p2(y+4-4v3]P  1 

sin mcf) 
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sin in(() 
2Gu. = + CrU/p)(m+4-4v)[(-m+y+l)P   - (m+y+l)pP ] 

'    ■ ^ y cos m(j> 

• U-l , m ,        m cos m* 
o -r  [(-m+y+l)(y2-3y+2yv-2rav-2v)P   + (m+y+1)[-yz+3y+2v]pP ] 
r y+i y sin mcf) 

aQ - (ry'1/p2){(-m+y+l)[(-y2-2yv-(3-2v:(m+l)p2 + (m2+(5-4v)m+4-4v)]Pm+1 

m cos rt4 
+   Cm+y+l)p[-m -5m+4mv-4+4v+p2(y2+3y-3-2v)]P  } 

y sin mcf) 

0.  »   CrV1"1/p2){(-m+y+l) [-m2-5m+4mv-4+4v+p2(l-2v)(m+y+l)]Pm
+ 

m cos nwf) 
+   Cm+y+l)p[m2+5ra-4mv+4-4v-(l-2v3(2y+l)p2]P  } 

y sin m^) 

Tnx = ±   (ry' /p2){(-m+y+l)p[m2+(5-4v)m+^(l-v)]pm 

a? y+1 

m sin mcf) 
+   (m+y+l)[p2Cmy+(3-2v)m+2(l-v)y+4(l-v))-m2-(5-4v)m-4(l-v)]P  } 

y cos mcf) 
y-1  - mm sin ^ 

T      = +   O      /p)[m(y-2+2v)+2y(l-v3-2(l-v)][(-m+y+l)P        -   (m+y+l)pP  ] 
<P li+1 y  cos mcf) 

Tre =   (ry"1/p){(-m+y+l)p[-my+2(l-v)(m-y+l)]P™+l 

m cos m(j) 
+  (m+y+l)[my+2(l-v)(-m+y-l)+p2(-y2+2-2v)]P } 

y sin mcj) 

Solution [C]: 

mm  C0S  ""^ 
2Gu    = rM(y-3+4v)(-P    ,   + pP ) r ^ J K    y+1      F y1 

sin mcf) 

u m cos m$ 
2GuQ =   (rM/p){(-m+4-4v)pP        +   [(m-4+4v)-p2(y+4-4v)]P™} 

sin mcj) 
,. sin n<}) 

2Gu    = +   (rM/p)(m-4+4v)(-P        + pP ) 
* y+1 V cos ncj, 

U-l m m  cos  ^ 
^r ■ rM    {[-y2+yC3-2v)-2mv+2v]P        +   (y2-3y-2v)pP™} 

sin mcj) 
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afl =   (rU" /p2){[p2(y2+2vy-(3-2v)(in-l)) + (-m2+(5-4v)m-4(l-v)) ]pm , y y+1 

m cos mcf) 
+   [p2(-y2-3y-3+2v)   + m2-(5-4v)m+4(l-v)]pP  } 

sin mtf) 

a^ =   (ry"1/p2){[p2(l-2v)(m-y-l)   + m2-(5-4v)m+4(l-v)]P™+1 

+   [p2(l-2vK2y+l)   - ra2+(5-4v)m-4(l-v)]pP  } 
„ cos mcj) 

y sm mq) 

Te<() =  ±   CrU" /P2)   [m2-(5-4v)m+4(l-v)]pP™+1 

sin m(j) 
+   [p2 (-my- (3-2v)m+2 (l-v)y+4 (1-v)) -m2+ (5-4v)m-4 (1-v) l?"1} 

^ cos m4> 
i sin mcj) 

Tr(D = *  (r     /PH-JKP+2(l-v)m+2Cl-v)(y-l)](-P    j + pP^ 
cos mcj) 

Tr9 =  (ry"1/p){[-ray+2(l-v)m+2(l-v)(y-l)]pP™+1 

m cos m(j) 
+   [my-2(l-v)m-2(l-v)(y-l)-p2(-y2+2-2v)]P  } 

^ sin mcf) 

Solution  [D]: 
cos mcj) 

2Gu    =  (y-3+4v)rypPm 
r
 y ■     A rsin mf 

cos mcj) 
2GU    =   (rM/p){(-m+y+l)pP    1   +   [p2(y+4-4v)-(y+l)]P  } 

9 y+1 ^ sin m({) 
sin mcj) 

2Gu    = i   (mp/p)ryPin 

* ucos mcj) 
, cos mcj) 

a    = ry"  {2v(-m+y+l)Pm n   +   (y2-3y-2v)pPm} 
sm mcj) 

•. cos mcj) 
ae =   (ry"i/p2){(m-y-l)[l-(3-2v)p2]P";+1  +   [m2

+y+l+p2(-y2-3y-3+2v)]pP"J} 
sin mcj) 

U 1 m cos ^ 
a    =   (r " /p2){(-m+y+l)[l+p2(-l+2v)]P        +   [-m2-y-l+Cl-2v) (2y+l)p

2]pPin} 
* y+1 V Sin m^ 
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Te()) = ± (^"Vp^mldn-y-DpP^^ + [y+2-P (y+S-Zv)]?^} 
sin m(}) 

cos mcj) 
sin m<j) 

cos in(() 

m Tre = C^ /P)U-m+VH-l}(y-2+2v)PP^+1 + [-y2+y(l-2v) + 2(l-v) 

m 
+ p2(y2-2+2v)]P } 

cos mcj) 

^ sin m(() 
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-X 

Figure 1. A flat wedge-shaped crack under three different modes and 
its two-dimensional counterparts. 
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0=-7t/Z 

Figure 2. A spherical coordinate surrounding the apex of a thin 
angular sector crack. 
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Figure 3. The eigenvalue y as a function of a/ir for v = 0.25. 

(a) Variational results indicated by x and • for mode II. 
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Figure 3(b). Variational results indicated by x and • for mode III. 
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